

Knud Valdemar T. Lassen Geophysicist

Program

- Short walkthrough of different types of 3D and pseudo 3D datasets
- How to combine 2D datasets into 3D datasets using Res2DInv
- Pitfalls when combining 2D datasets into 3D datasets
- Interpolating 2D inversions into 3D models

Litterature:

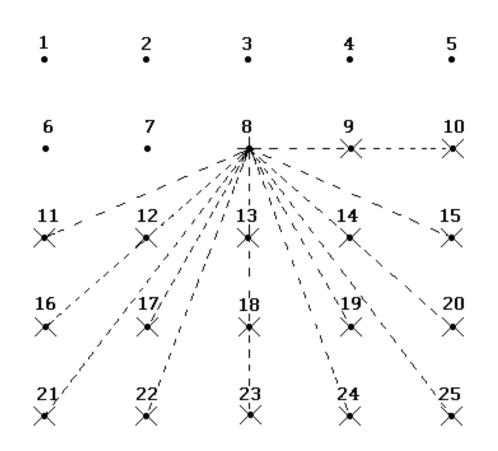
Dr. M.H. Loke, Tutorial : 2-D and 3-D electrical imaging surveys

Especially chapter 8: 3-D electrical imaging surveys

http://www.ags-cloud.dk/Wiki/W_GeotomoNotes

Different types of 3D datasets

The "ideal" 3D dataset:


- · Electrodes are laid out in a more ore less structured grid
- Measurements are made in all directions, along the grid lines and at different angles to these

Pros:

- · Covers all possible current paths in the ground
- Ideal resolution of 3D structures

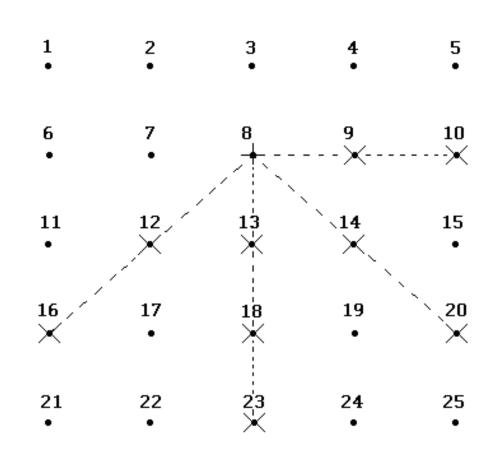
Cons:

• Very expensive in both time and equipment

Different types of 3D datasets

The "best we can do with 2D instruments" 3D dataset:

- Electrodes are laid out in a more ore less structured grid
- Measurements are made in all directions, along the grid lines and at different angles to these


Pros:

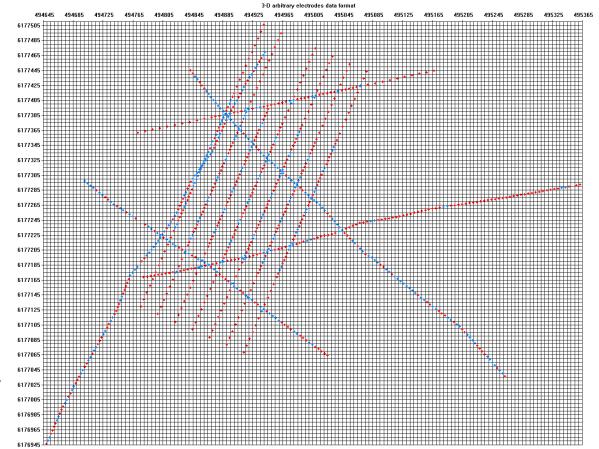
- Nearly as good as the ideal dataset
- Can be carried out with "standard" 2D equipment

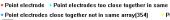
Cons:

Possibly even more time consuming than the ideal 3D survey

Different types of 3D datasets

The "realistic with 2D equipment" 3D dataset:


- Electrodes are laid out in a more ore less structured grid
- Measurements are made in all directions, along the grid lines and at different angles to these


Pros:

- Decent 3D information in the dataset
- Can be carried out with "standard" 2D equipment
- Good trade-off between resolution and price

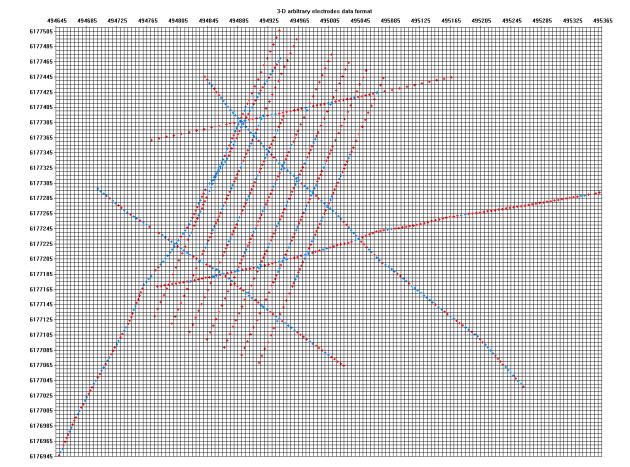
Cons:

- Still much more time consuming than a regular 2D survey
- Does not provide full 3D coverage

Model cell

light mouse button - Add x-line, Left mouse button - Add y line, X key - Remove x line, Y key - Remove y line

What makes a good 3D from 2D dataset?



Low distance between the 2D lines

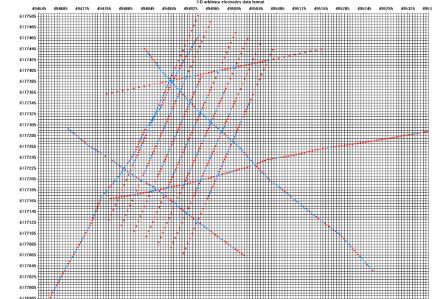
- Ideally the same spacing as the minimal electrode spacing
- Up to 2-3 times is usually accepted (also depending on the presence of tie lines)

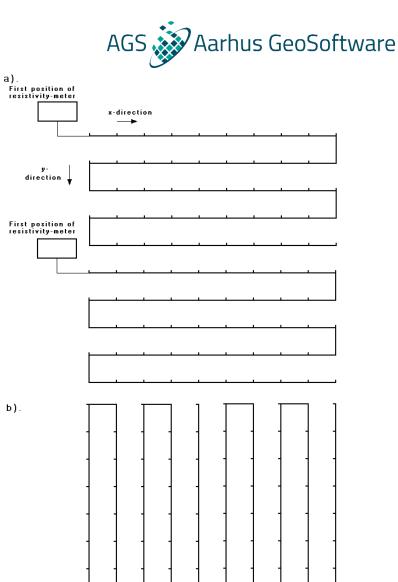
Lines in several directions:

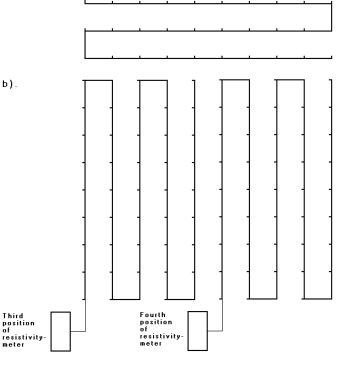
- Ideally the lines should cover the survey area in many different directions
- Usually a measurements are made in a grid like structure with survey lines being perpendicular to each other
- Often we only have parallel 2D lines with no or a few tie lines

oint electrode + Point electrodes too close together in same array(0)

Point electrodes close together not in same array(354)
 Point electrodes on same node (0
 Model cell


Right mouse button - Add x-line, Left mouse button - Add y line, X key - Remove x line, Y key - Remove y line


How to combine the 2D surveys to 3D


- Prepare the 2D dat files in the same way as for a ٠ regular 2D inversion
- Combine the files using Res2DInv, this is done by • preparing a text file

Two options

- 1. Add global coordinates and use these to position the lines
- 2. Define the relative positions of the 2D lines in the collation text file (only for parallel and perpendicular lines)

How to combine the 2D surveys to 3D Option 1, adding global coordinates

794	4	235.00	4.82	355.00	7.41	305.00	8.33	315.00	8.44	138.0700	
79	5 4	235.00	4.82	355.00	7.41	315.00	8.44	325.00	8.28	134.3600	
79	5 4	235.00	4.82	355.00	7.41	325.00	8.28	335.00	8.00	138.9900 CLast 4 data lines, or topography section	
791	4	235.00	4.82	355.00	7.41	335.00	8.00	345.00	7.72	138.6200	
798	0										
799	Globa	Global Coordinates present									
800	Numbe	Number of coordinate points Header lines									
803	. 17 N	¹⁷ Number of corrdinate points									
802	Local	Local Longitude Latitude Header line									
803	85	.00 572088.12	2 6222426	· ⁵⁷ X-coordinate	along profile	e Lonaitude/U	TMX Latitude				
804	90	.00 572088.28	6222421	.58	along prom	o, congitudo, o	Thirt, Eathadd				
803	5 110	.00 572088.93	6222401	.60							
80(115	.00 572089.07	6222396	.61							
80	120	.00 572089.23	3 6222391	.62							
808		.00 572089.3	9 6222386	.66							
808											
810											
813											
812											
813											
814											
81											
81											
81											
818											
819	355		6 6222157	.44							

⁸²⁰ ⁰ End of file

How to combine the 2D surveys to 3D Option 1, recommended

- 1 3-D arbitrary electrodes data format
- 2 Number of files to collate
- 3 12
- 4 Arbitrary point electrodes format
- 5 X model grid spacing
- 6 5.0
- 7 Y model grid spacing
- 8 5.0
- 9 File 1 parameters
- 10 Name of data file in RES2DINV format
- 11 C:\Users\KVTL\Dropbox (Aarhus GeoSoftware)\KV\Webinar\2Dto3D\Example\Profile_1_2D.dat
- 12 File 2 parameters
- 13 Name of data file in RES2DINV format
- 14 C:\Users\KVTL\Dropbox (Aarhus GeoSoftware)\KV\Webinar\2Dto3D\Example\Profile_2_2D.dat
- 15 File 3 parameters
- 16 Name of data file in RES2DINV format
- 17 C:\Users\KVTL\Dropbox (Aarhus GeoSoftware)\KV\Webinar\2Dto3D\Example\Profile_3_2D.dat
- 18 Name of Output file in RES3DINV format
- 19 C:\Users\KVTL\Dropbox (Aarhus GeoSoftware)\KV\Webinar\2Dto3D\Example\Combined3D.dat
- 20 End of file

How to combine the 2D surveys to 3D Option 2

```
1 Collate 3 Lines
 2 Number of files to collate
 3 3
 4 File 1 parameters
 5 Name of data file in RES2DINV format
 6 d:\test\FILE2D 1.DAT
 7 X and Y location of first electrode along this line
 8 0.0,0.0
 9 Line direction (0=X,1=Y)
10 0
11 Line sign (0=positive,1=negative)
12 0
13 File 2 parameters
14 Name of data file in RES2DINV format
15 d:\test\FILE2D 2.DAT
16 X and Y location of first electrode along this line
17 0.0,-0.5
18 Line direction (0=X,1=Y)
19 0
20 Line sign (0=positive,1=negative)
21 0
22 File 3 parameters
23 Name of data file in RES2DINV format
24 d:\test\FILE2D 3.DAT
25 X and Y location of first electrode along this line
26 0.0,-1.0
27 Line direction (0=X,1=Y)
28 0
29 Line sign (0=positive, 1=negative)
30 0
31 Name of Output file in RES3DINV format
32 d:\test\FILE 3D.dat
33 End of file
```


NOTE: With this method the grid discretisation needs to be edited manually

3D interpolation instead of 3D Inversion

- Possible alternative when 3D inversion is not an option
- Most suitable for simple layered geologies

Performing 3D interpolation in Aarhus Workbench Essentials

- 1. Run the inversions as regular 2D inversions
- 2. Export the results to VTK files as described here: <u>http://www.ags-cloud.dk/Wiki/W_GeotomoGuides</u>
- 3. Import the VTK's in Aarhus Workbench Essentials and perform the interpolation